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Supplementary Figures 
 
 

 
Supplementary Figure 1. Task information persist in functional networks and are 
transferred between networks via network-to-network information transfer mapping. All 
reported results were statistically significant p<0.05 (FWE-corrected). A) Network-to-network 

information transfer mapping uses the network-level activation pattern (using the mean 
activations of brain regions) and the region-to-region resting-state FC topology to predict the 
network-level activation pattern of another functional network. B) Information estimates of task-

rule information across three rule domains prior to performing information transfer mapping. The 
seven networks contain statistically significant decodable representations of at least one rule 
domain using a cross-validated representational similarity analysis approach. In particular, the 
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SMN contains the highest information estimate for motor task rules. In addition, most networks 
contain logic rule information, suggesting that abstract rule representations were highly 
distributed across cortical networks. C) Network-to-network information transfer mapping of 

logic rules. As in Fig. 6, functional networks along the rows indicate the activation patterns that 
were projected to the networks indicated along the columns. Colors indicate the T-statistic from 
a one-sided t-test against 0. The transfer of logic rule information was distributed among other 
domain-general networks, such as the CON and DMN. D) Network-to-network information 

transfer mapping of the sensory rules. Sensory rule information is transferred between the FPN 
and other domain-general networks (DMN, CON), as well as from VIS and the DAN. E) 
Network-to-network information transfer of motor rules. Information transfer mapping of motor 
rule representations occurs between the DAN <-> SMN, CON <-> SMN. 
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Supplementary Figure 2. Information transfer mappings between all pairs of regions for 
all defined functional networks. All reported results were statistically significant at p<0.05 

(FWE-corrected). Here, we show a superset of the summary results shown in Fig. 6B,D,F, 
including significant information transfer results for all 14 functional networks. While results for 
all regions (belonging to all 14 functional networks) are shown in panels Fig. 6A,C,E, functional 
networks that were not well-defined by previous network partitions were not included in Fig. 
6B,D,F. Note that the 7 functional networks not included in Fig. 6 are the seven smallest 
networks, each consisting of fewer than 20 parcels. A) Percent of significant region-to-region 
information transfers for all 14 network definitions for the logic rule domain. B) Percent of 

significant region-to-region information transfers for all 14 network affiliations for the sensory 
rule domain. C) Percent of significant region-to-region information transfers for all 14 network 
affiliations for the motor rule domain. D) Significant information transfers between regions for all 

14 network affiliation across rule domains, derived in the same way as data in Fig. 6G. Despite 
including all functional networks, we found that transfers between the FPN and the CON were 
still the only transfers between a pair of networks that consistently transferred information 
across two rule domains. E) We assessed whether a network was consistently involved in 

sending task rule information (as a source region) across each rule domain. We found that 
regions in the FPN consistently transferred information across two rule domains. F) Network 

assignments and color definitions for all 14 functional networks. Here, we attribute functional 
names for all 14 networks. Color schemes are consistent with colorings shown on the 
anatomical surface in Fig. 3A.  
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Supplementary Figure 3. Computational validation of information transfer mapping with 
different task stimulation patterns and decoding approaches. We simulated an additional 

35 subjects to test whether information transfer mapping would be consistent across different 
task stimulation patterns and decoding approaches. A) We performed the same analysis as 
depicted in Fig. 4, where we simulated cognitive control task rules by stimulating regions in the 
hub network for four distinct task-rule conditions. We depict the uncorrected information transfer 
estimates for every network-to-network configuration using the information transfer mapping 
procedure described in Fig. 1C. B) Thresholded map of panel Supplementary Figure 3A. For 
every network-to-network information transfer mapping, we performed an across subject, one-
sided t-test against 0. Statistical significance is assessed using FWE-corrected p-values of 
p<0.05. C) We simulated a task that combined both top down stimulation (e.g., mimicking task-
rule encoding) and bottom up stimulation in local networks (e.g., mimicking stimuli 
presentations). This task also included four distinct task conditions, where each condition 
stimulated a subset of regions in the hub network along with a subset of regions in a local 
network simultaneously. Each task condition stimulated a subset of regions in a different local 
network. D) Thresholded map of panel C, using FWE-corrected p-values of p<0.05. While the 

pattern of information transfer was largely the same, information transfer of both top down and 
bottom up stimulation was more disperse than top down stimulation only. E-H) We performed 
the group analyses on the same exact data (see Supplementary materials) as Supplementary 
Figures 3A-D but instead of using an RSA approach (i.e., predicted-to-similarity analysis; Fig. 
1C), we used SVMs (training on predicted activation patterns and testing on held-out actual 
activation patterns). Note that Supplementary Fig. 3F has qualitatively identical results as in our 
computational validation results (Fig. 4E) using representational similarity analysis. For panels F 
and H, statistical significance was assessed using one-sided t-tests against chance (25% 
chance) for a four-way task condition classification. Thresholds were applied using an FWE-
corrected p<0.05. All panels show the raw effect sizes. 
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Supplementary Figure 4. Network-to-network information transfer mapping depends on 
precise FC topology between pairs of networks. All reported results were statistically 

significant at p<0.05 (FWE-corrected). To ensure that information transfer mapping between 
networks depended on the precise FC topology between pairs of networks, we generated a null 
distribution of information transfers by permuting the inter-region FC patterns between pairs of 
networks prior to performing the network-to-network information transfer procedure. For each 
network-to-network information transfer mapping, 1000 FC permutations were conducted. 
Significant results demonstrate that the information transfer depended on the precise network-
to-network FC topology. This analysis demonstrates that the results obtained using parametric 
statistical testing (Supplementary Fig. 1) depend on the precise inter-region FC patterns 
between pairs of networks, as results from the parametric and non-parametric tests are virtually 
identical. Color maps represent the group averaged information transfer estimate, since no t-
statistic is available in the null distribution.  
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Supplementary Figure 5. The behavioral relevance of cognitive task information transfer. 
We found that task-rule information transfer between two FPN regions could decode miniblock 
task performance significantly above chance. We constructed a decoding model using multiple 
logistic regression to decode task performance in a held-out miniblock by fitting to the logic, 
sensory, and motor information transfer estimates across miniblocks. When transformed into the 
OFC region’s spatial dimensions, task-rule information in the LPFC region could predict a 
miniblock’s task performance significantly above chance, suggesting that the transfer of task-
rule information between these regions is relevant for task performance. 
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Supplementary Figure 6. Information transfer mappings between all pairs of regions 
using an FDR-corrected threshold for all defined functional networks. Due to the 
conservative nature of FWE correction for multiple comparisons correction, we also report the 
same results from Fig. 6 and Supplementary Figure 2 using an FDR-corrected p-value of 
p<0.05. Using FDR-correction, we found that statistically significant task-rule information 
transfers were much more distributed than with FWE-correction, particularly with logic rule 
transfers. A) Percent of significant region-to-region information transfers for all 14 network 
definitions for the logic rule domain. B) Percent of significant region-to-region information 
transfers for all 14 network affiliations for the sensory rule domain. C) Percent of significant 
region-to-region information transfers for all 14 network affiliations for the motor rule domain. D) 

Significant information transfers between regions for all 14 network affiliation across rule 
domains, derived in the same way as data in Fig. 6G. E) We assessed whether a network was 
consistently involved in sending task rule information (as a source region) across the three rule 
domains. We find that with an FDR-corrected threshold of p<0.05, the FPN, DAN, and DMN all 
contain regions that transfer information across all three rule domains. F) Network assignments 

and color definitions for all 14 functional networks. Here, we attribute functional names for all 14 
networks. Color schemes are consistent with colorings shown on the anatomical surface in Fig. 
3A. 
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Supplementary Figure 7. Percent of significant information transfers from each cortical 
region using an FDR-corrected threshold. Due to the conservative nature of FWE correction 
for multiple comparisons correction, we also report results from Fig. 7 using an FDR-corrected 
threshold of p<0.05. A) Percent of statistically significant information transfers from each region 

for the logic rule domain. Percentages were computed by taking the number of significant 
transfers from each region, and dividing it by the total number of possible transfers from that 
region (359 other regions). B) Percent of statistically significant information transfers from each 
region for the sensory rule domain. C) Percent of statistically significant information transfers 

from each region for the motor rule domain.  
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Supplementary Methods 
 

We provide Supplementary Methods for several of our Methods subsections below. For 
completeness, we have included redundant text for the Methods subsections that 
contain additional information. However, subsections for which there is no additional 
information (e.g., the “Participants” subsection) are not included in the Supplementary 
Methods. 
 
Behavioral paradigm 
 We used the Concrete Permuted Rule Operations (C-PRO) paradigm (Fig. 2), 
which is a modified version of the original PRO paradigm introduced in Cole et al., 
(2010)1. Briefly, the C-PRO cognitive paradigm permutes specific task rules from three 
different rule domains (logical decision, sensory semantic, and motor response) to 
generate dozens of novel and unique task sets. This creates a condition-rich dataset in 
the task configuration domain akin in some ways to movies and other condition-rich 
datasets used to investigate visual and auditory domains2–4. The primary modification of 
the C-PRO paradigm from the PRO paradigm was to use concrete, sensory 
(simultaneously presented visual and auditory) stimuli, as opposed to the abstract, 
linguistic stimuli in the original paradigm. Visual stimuli included either horizontal or 
vertical oriented bars with either blue or red coloring. Simultaneously presented auditory 
stimuli included continuous (constant) or non-continuous (non-constant, i.e., “beeping”) 
tones beeps presented at high (3000Hz) or low (300Hz) frequencies. Fig. 2 
demonstrates two example task-rule sets for “Task 1” and “Task 64”. The paradigm was 
presented using E-Prime software version 2.0.10.3535. 
 Each rule domain (logic, sensory, and motor) consisted of four specific rules, 
while each task set was a combination of one rule from each rule domain (Fig. 2). The 
sensory rules specified the audiovisual features to attend to (e.g., “is it vertical?” for 
visual decisions, or “is it high-pitch?” for auditory decisions). The logic rules specified 
how to respond based on the pair of stimuli presentations (e.g., “if both are vertical” or 
“if either are vertical”). Finally, the motor rules specified which button to press, which 
depended on the answer to the logic rule. For “true” outcomes, subjects were asked to 
respond with the motor rule presented in the task-rule set; for “false” outcomes, subjects 
were asked to respond with the other finger on the same hand.  

A total of 64 unique task sets (4 logic rules x 4 sensory rules x 4 motor rules) 
were possible, and each unique task set was presented twice for a total of 128 task 
miniblocks. Identical task sets were not presented in consecutive blocks. Each task 
miniblock included three trials, each consisting of two sequentially presented instances 
of simultaneous audiovisual stimuli. A task block began with a 3925ms instruction 
screen (5 TRs), followed by a jittered delay ranging from 1570ms to 6280ms (2 – 8 TRs; 
randomly selected). Following the jittered delay, three trials were presented for 2355ms 
(3 TRs), each with an inter-trial interval of 1570ms (2 TRs). A second jittered delay 
followed the third trial, lasting 7850ms to 12560ms (10-16 TRs; randomly selected). A 
task block lasted a total of 28260ms (36 TRs). Subjects were trained on four of the 64 
task-rule sets for 30 minutes prior to the fMRI session. The four practiced rule sets were 
selected such that all 12 rules were equally practiced. There were 16 such groups of 
four task sets possible, and the task sets chosen to be practiced were counterbalanced 
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across subjects. Subjects’ mean performance across all trials performed in the scanner 
was 85% (median=86%) with a standard deviation of 8% (min=66%; max=96%). All 
subjects performed statistically above chance (25%). 
 
Network assignment of Glasser et al. (2016) parcels 

Partitioning of the parcels (regions) into networks was based on the procedure 
used in Cole et al. (2014; see Supplementary Information). Specifically, we used the 
Louvain locally-greedy algorithm9,10 for community detection. Data from the publically 
available Washington University-Minnesota Human Connectome Project “HCP100” 
dataset were used (N=100). Similar preprocessing procedures as used for the primary 
dataset were applied to the HCP100 dataset. Specifically, in addition to minimal 
preprocessing7, we ran a GLM nuisance regression using white matter, ventricles, and 
motion regressors (and their first derivatives). Global signal regression, motion 
scrubbing, and temporal filtering were not used. For each subject, all four resting state 
runs were concatenated and FC was estimated using standard Pearson correlations. 
The FC matrices were averaged across subjects to generate a group-mean resting-
state FC matrix. 

We searched over two free parameters to find a community partition for the 
group-mean resting-state FC matrix. The first parameter was the density threshold, 
whereby weak connections (based on the absolute value of FC strengths) were 
removed prior to running the community detection algorithm. The second parameter 
was the structural resolution parameter, which can be used to tune the number of 
communities identified in the FC matrix. The parameter search was conducted across 
combinations of these two parameters (density of 40% to 100% in increments of 5%, 
and resolution of 0.8 to 3 in increments of 0.05), with two criteria: 1) there should be a 
peak of partition similarity (z-score of the Rand coefficient)11 among adjacent locations 
in this two-dimensional parameter space, and 2) there should be distinct communities 
corresponding to visual, auditory, dorsal attention, default-mode, and motor/tactile 
systems (given decades of neuroscience research demonstrating their existence). 
Approximate locations of these systems were based on standard neuroscientific 
knowledge of these systems (given their strong establishment in the literature), in 
addition to their identification using resting-state FC in previous reports12–14. A five-
community partition had the highest nearest-neighbor similarity in parameter space, but 
this did not separate out the auditory system. The next-highest nearest-neighbor 
similarity peak (density = 100%, resolution = 1.2) with distinct communities 
corresponding to auditory, visual, dorsal attention, default-mode, and motor/tactile 
systems was a 14-community partition. This partition was then visualized using 
Connectome Workbench software (Fig. 3A). Labels were assigned to the seven most 
replicated networks identified using resting-state FC12–14. Colors were assigned to 
networks based on the colors used by Power et al. (2011). 
 
Neural network model 
 To validate our information transfer estimation approach we constructed a simple 
dynamical neural network model with similar network topological properties identified in 
our empirical fMRI data. We constructed a neural network with 250 regions, each of 
which were clustered into one of five network communities (50 regions per community). 
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Regions within the same community had a 35% probability of connecting to another 
region (i.e., 35% connectivity density), and regions not assigned to the same community 
were assigned a connectivity probability of 5% (i.e., 5% out-of-network connectivity 
density). We selected one community to act as a “network hub”, and increased the out-
of-network connectivity density of those regions to 20% density. We then applied 
Gaussian weights on top of the underlying structural connectivity to simulate mean-field 
synaptic excitation between regions. These mean-field synaptic weights were set with a 

mean of        with a standard deviation of       , where   is the number of synaptic 
inputs into a region such that synaptic input scales proportionally with the number of 
inputs. This approach was recently shown to be a plausible rule in real-world neural 
systems based on in vitro estimation of between-neuron synaptic-weight-setting rules16. 
 To simulate network-level firing rate dynamics, as similar to Stern et al. (2014), 

region xi’s dynamics for         obeyed the equation 

   
  
      ( )      (  ( ))    (∑     (  ( ))

 

   

)    ( )       ( ) 

We define the transfer function   as the hyperbolic tangent,    the dynamics of region 

        for    ,   ( ) the input function (e.g., external spontaneous activity alone or 

both spontaneous activity and task stimulation) for        ,   the underlying 

synaptic weight matrix,   the local coupling (i.e., recurrent) parameter,   the global 
coupling parameter, and    the region’s time constant. For simplicity, we set        

and       ms, though we show in a previous study8 that the activity flow mapping 
breaks down for parameter regimes    .  

We first simulated spontaneous activity in our model by injecting Gaussian noise 
(parameter   ( ) ; mean of 0.0, standard deviation 1.0). Numerical simulations were 
computed using a Runge-Kutta second order method with a time step of dt=10 ms. We 
ran our simulation for 600 seconds (10 minutes). To simulate resting-state fMRI, we 
then convolved our time series with the SPM canonical hemodynamic response function 
and down sampled to a 1 second TR, resulting in 600 time points. We then computed 
resting-state FC using multiple linear regression. To replicate the empirical data, we 
computed the BGC of the resting-state data (as in the empirical data) to validate that 
widespread out-of-network connectivity was preserved from synaptic to FC.  

To model task-evoked activity, we simulated four distinct task conditions by 
injecting stimulation into four randomly selected but distinct sets of twelve regions in the 
hub network. Stimulation to the hub network was chosen to mimic four distinct top-down, 
cognitive control task rules. Task stimulation coincided with spontaneous activity (e.g., 
for time points t during a task, I(t) = spontaneous activity at t + 0.5 constant task 
stimulation). We ran each task for 20 blocks, where each block lasted for 100 seconds. 
Each block contained five trials, each lasting for five seconds with an inter-trial interval 
of 15 seconds. In total, each task condition contained 100 task trials, with 500 seconds 
per task total. We then convolved these task time series with the SPM canonical 
hemodynamic response function and down sampled to 1-second TRs, as in the resting-
state simulation. We simulated 30 subjects worth of data, and generated figures using 
group t-tests and controlled for multiple comparisons using FWE-correction permutation 
tests15.  
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We validated the usefulness of the model for characterizing hub-related 
dynamics by testing whether estimated resting-state FC preserved the hub network’s 
higher out-of-network intrinsic FC (specified by its underlying synaptic connectivity) by 
computing each network’s BGC. BGC was computed in the same way as in the 
empirical data (see equation 2) for each of the network model’s communities. For each 
of the five networks, we compared the BGC between each network using a cross-
subject t-test. We corrected for multiple comparisons using FWE permutation tests15 
and significance was assessed with an FWE-corrected p < 0.05 threshold. 

To perform network-to-network information transfer mapping in the model, we 
used the task-evoked activity (estimated by standard GLM beta estimates), and 
performed the information transfer mapping procedure between networks of regions 
using the resting-state FC matrix obtained via multiple linear regression. Network-to-
network information transfer mapping is computationally identical to region-to-region 
information transfer mapping, and is described below. The information transfer mapping 
matrix (Fig. 4E) was obtained using an FWE-corrected threshold of p < 0.05. 

We primarily focused on stimulating the hub network to mimic top-down 
processes, since our empirical results focused on task-rule manipulations irrespective of 
stimuli presentations and motor responses. However, to demonstrate the generality with 
which information transfer can occur, we performed an additional set of simulations that 
focused on demonstrating that information transfer occurs with simultaneous top-down 
(hub network) and bottom-up (local network) stimulation. Using the same parameters as 
in the original simulation, we first replicated the same results as in Fig. 4E with hub 
network stimulation only (i.e., top-down control). To simulate top-down and bottom-up 
activation we simulated four task conditions by injecting activity into four sets of regions. 
For each task condition, we simultaneously injected two sets of 12 regions; one set of 
12 regions in the hub network (mimicking top-down activity), and one set of 12 regions 
in a local network (mimicking bottom-up activity). Each task condition stimulated a set of 
regions belonging to a different local network and a distinct set of regions in the hub 
network. Aside from task stimulation, all other model and simulation parameters were 
kept the same from the simulation result in Fig. 4.  

Our results were highly similar to the previous results, demonstrating that in both 
the top-down-only task and the simultaneous top-down and bottom-up task, information 
transfers between the hub and local networks were the strongest (Supplementary Fig. 
3A,C). However, statistical testing demonstrated that some local-network-to-local-
network information transfers were significant (after correcting for multiple comparisons; 
Supplementary Fig. 3D,H). We believe these effects are likely due to the existence of 
random (albeit sparse) connections between local networks. We also show that the 
predicted-to-actual similarity analysis portion of the information transfer procedure 
(described below) can be substituted with support vector machine (SVM) classification 
(Supplementary Fig. 3E-H; see below for details).  

 
Computing baseline information estimates for regions and networks 
 To compute the baseline (i.e., unrelated to FC) information content at the region 
level (Fig. 5), we performed a within-subject, cross-validated multivariate pattern 
analysis using representational similarity analysis for every Glasser et al. (2016) parcel 
(using the vertex-level multivariate activation pattern within each parcel). We estimated 
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task-activation beta coefficients separately for each vertex within a region, and 
separately for each miniblock. Note that each miniblock was associated with a specific 

task-rule condition for each rule domain. Mathematically, we defined    , the 
information estimate of region B, as 

                            ( ) 
where MatchB and MismatchB correspond to the averaged Spearman rank correlation 
for matched and mismatched conditions, respectively. Specifically, we define MatchB 
and MismatchB as  

       
∑      (         )
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where   corresponds to the total number of miniblocks (in this paradigm, 128 

miniblocks),       corresponds to a Fisher z-transformed Spearman’s rank correlation 
between two activation vectors,    is the activation pattern in region B during block  , 

       is the task-rule condition prototype (obtained by averaging across blocks of the 
same condition, holding out block  ) of region B’s activation pattern for which block  ’s 

condition matches, and            as the task-rule condition prototypes for which block 

 ’s condition does not match. (In the present study    , since each rule dimension 
has four task-rule conditions, and for a given miniblock there’s one match and three 
mismatched conditions.) To avoid circularity, we performed a leave-four-out cross-
validation scheme, holding out a miniblock of each task-rule. This ensured that 
miniblock    was not included in constructing the condition prototype        and that 
condition prototypes were each constructed using the same number of miniblocks. Prior 
to running the representational similarity analysis, all blocks were spatially demeaned to 
increase the likelihood that the representations we were identifying was a multivariate 
regional pattern (rather than a change in region-level mean activity). Use of Spearman’s 
rank correlation also reduced the likelihood that the identified multivariate representation 
patterns were driven by mean activity changes or a small number of outlier values. 

Statistical significance was assessed by taking a one-sided group t-test against 0 
for each region’s information estimate across subjects, since a greater than 0 difference 
of matches versus mismatches indicated significant representation of specific task rules. 
All p-values were corrected for multiple comparisons across the 360 parcels using 
FWE-correction with permutation tests15, and significance was assessed using an FWE-
corrected threshold of p<0.05. 

For network-level information estimates (Supplementary Fig. 1B), the same 
cross-validated representational similarity analysis procedure was conducted for the 
seven functional networks separately across the three rule domains, using region-level 
representations within each of the networks. Region-level beta estimates were obtained 
for every block by fitting the same GLM model as described above to every region 
separately. All p-values were FWE-corrected for multiple comparisons across seven 
networks with permutation tests15, and significance was assessed using an FWE-
corrected p<0.05. 
 
Region-to-region information transfer mapping 
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We extended the original activity flow mapping procedure as defined in Cole et 
al. (2016)8 (Fig. 1A) to investigate transfer of task-related information between pairs of 
brain regions using vertex-wise activation patterns (i.e., region-to-region activity flow 
mapping; Fig. 1B). The original activity flow mapping approach predicted the activity 
level of a single held-out region using the weighted sum of the task-evoked activity of all 
other regions. These activation estimates were obtained using a standard fMRI general 
linear model (GLM). The weights in the weighted sum were based on the resting-state 
FC from the source regions to the held-out region. The region-to-region activity flow 
mapping procedure developed here is computationally similar. However, instead of 
predicting the activity of a single held-out region based on all other regions, we 
predicted the activity of the vertices of a held-out target region based on the vertices 
within a source region. Mathematically, we define region-to-region activity flow mapping 
between regions A and B as 

 ̅                  ( ) 
where  ̅  corresponds to the predicted activation pattern vector for the target region B, 

   corresponds to region A’s activation pattern vector (i.e., the source region),       
corresponds to the vertex-to-vertex resting-state FC between regions A and B, and the 
operator • refers to the dot product. This formulation allowed us to map activation 
patterns in one region’s spatial dimension to the spatial dimension of another region. 

To test the extent that task representations are preserved in the region-to-region 
multivariate predictions, we quantified how much information transfer occurred between 
the two regions. Briefly, information transfer mapping comprises three steps, illustrated 
in Fig. 1C: (1) Region-to-region (or network-to-network) activity flow mapping; (2) A 
cross-validated representational similarity analysis between predicted activation 
patterns and actual, held-out activation patterns; (3) Information classification/decoding 
by computing the difference between matched condition similarities and mismatched 
condition similarities. This final step produces an information transfer estimate. 

Mathematically, our information transfer estimate was derived using almost the 
exact formulation as our information estimate formula. Specifically, we defined 

information transfer between regions A and B, or      , as 
                                ( ) 

where MatchAB and MismatchAB corresponds to the averaged Spearman rank 

correlation for matched and mismatched conditions using the source region A, 
respectively. Similarly to equations 6 and 7, we define MatchAB and MismatchAB as 

        
∑      ( ̅        )
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where   corresponds to the total number of miniblocks,       corresponds to a Fisher 

z-transformed Spearman’s rank correlation between two vectors,    as the predicted 

activation pattern in the target region B (using region A’s activation pattern) for block  , 
       as the condition prototype (obtained by averaging across blocks of the same 

condition, holding out block  ) of the target region B’s actual activation pattern for which 

block  ’s condition matches, and            as the condition prototypes for which block 

 ’s condition does not match. (In the present study    , since each rule dimension 
has four task-rule conditions.) As with the previously defined information estimate, we 
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performed a leave-four-out cross-validation scheme, holding out a miniblock of each 
task-rule. This ensured that the actual activation pattern    of the predicted miniblock 

    was not included in constructing the condition prototype       . Prior to running the 
representational similarity analysis, all blocks were spatially demeaned to increase the 
likelihood that the representation we were identifying was a multivariate regional pattern 
(rather than a change in region-level mean activity). This formulation allowed us to 
quantify how much “information transfer” occurred between two regions by comparing 
the predicted activation pattern in the target region to the actual activation pattern in the 
target region across all cross-validation folds. 

We also demonstrate that the predicted-to-actual similarity analysis in our 
information transfer mapping procedure can be substituted with an SVM decoding 
scheme. Specifically, we show in our computational model that we could train a linear 
classifier on the target region’s predicted activation patterns that could decode the 
actual, activation patterns in that target region (Supplementary Figures 3E,F). We used 
the same leave-four-out cross-validation scheme as above to obtain these results, and 
we find that the information transfer mapping results with SVM decodings 
(Supplementary Figure 3F) are identical to using representational similarity analysis 
(Fig. 4E). 

Note that information decoding was performed on the cortical surface, using 
vertices rather than voxels. This vertex-wise approach has been shown to provide better 
multivariate classifications than voxel-wise information decoding17, likely because 
surface analyses better reflect the underlying cortical anatomy. 

Information transfer mapping was performed within subject between every pair of 
regions in the Glasser et al. (2016) atlas (360 regions in total). The results of this 
approach between all region pairs were then visualized via a 360-by-360 matrix (a total 
of 129,240 region-to-region mappings), where the regions along rows (source regions) 
indicated the activation patterns used to map onto a target region’s activation pattern, 
which was indicated along the columns (Fig. 6B,D,F). Statistical tests were performed 
using a group one-sided t-test (t > 0) for every pair-wise mapping. A one-sided t-test 
was appropriate here given that our hypotheses were implicitly one-sided, since any 
significant deviation above 0 indicated a significantly higher matched versus 
mismatched correlation between predicted-to-actual activation patterns (i.e., the 
information transfer estimate). Our use of mismatched correlations as a baseline 
ensured that any positive information transfer estimates was a result of a task-rule-
specific representation, rather than a task-general effect. Any information estimate that 
was not significantly greater than 0 indicated that the predicted-to-actual similarity was 
at chance (akin to chance decoding using classifiers). We tested for multiple 
comparisons using permutation testing15 for every region-to-region mapping, and 
significance was assessed using FWE-corrected p-values with p<0.05. Note that to 
avoid circularity for region-to-region information transfer mapping, any vertices in a 
source region that fell within a 10mm radius of the to-be-predicted target region (e.g., an 
adjacent region) would not contribute any activity flow to the to-be-predicted target 
region (see FC estimation Methods section for details). 
 Given the visual sparsity of the region-to-region information transfer mapping 
visualization, we opted to down sample our matrix to provide a simpler visualization to 
assess how pairs of regions transfer information between and within functional networks 
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(Fig. 6C,E,G). Thus, we computed the percent of statistically significant transfers for 
every pair of networks. This allowed us to better visually assess how region-to-region 
information transfer mappings may have been influenced by underlying network 
organization. To compute the percent of statistically significant transfers, we counted 
the number of significant transfers between every pair of networks and divided that by 
the total number of possible transfers within that network-to-network configuration. To 
characterize the generality with which information transfer mappings occurred between 
specific network configurations, we computed the number of rule domains in which each 
network configuration contained at least one region-to-region transfer (Fig. 6H). In other 
words, we took the matrices in Fig. 6C,E,G and binarized them with a 1 if a cell had a 
greater than 0 percentage of transfers, and a 0 otherwise. We then summed these 
matrices element-wise to obtain the number of rule domains each network configuration 
had a successful information transfer in. To assess the number of rule domains each 
network contained at least one successful source region, we took the percent of 
significant transfers from each network to any other region in the brain (a 7-element 
array) and then binarized the array for each rule domain. We then summed across the 
three arrays (one for each rule domain) to obtain the number of rule domains each 
network had at least one successful source region used for information transfer (Fig. 6I). 
 Lastly, to visualize the anatomical locations of the source regions for information 
transfer, we computed the percent of significant transfers from each cortical region for 
each rule domain (Fig. 7). Percentages were obtained by taking the number of 
successful transfers from a region, and dividing it by total number of possible transfers 
(i.e., 359 other regions). We then plotted each of these percentages on the cortical 
surface using Connectome Workbench software (version 1.2.3) for each rule domain18. 
 
Network-to-network information transfer mapping 

Network-to-network information transfer mapping in both the computational 
model (Fig. 4E) and empirical data (Supplementary Fig. 1C,D,E) was performed in the 
same computational framework as above, though instead of predicting region-level 
activation patterns using vertex-level activation patterns, network-level activation 
patterns were predicted using region-level activations (averaging across vertices within 
a given region). In other words, when predicting a target network B’s region-level 
activation pattern, we computed the dot product between a source network A’s region-
level activity vector and the region-to-region resting-state FC matrix between regions in 
network A and B. We then submitted our 128 task block predictions for network B to our 
information transfer mapping procedure, as described above. This was repeated for 
every pair of the seven functional networks defined by our community-detection 
algorithm, resulting in 7-by-7 network-to-network mappings which were visualized as a 
7x7 matrix (Supplementary Fig. 1C,D,E). We tested for multiple comparisons using 
FWE-correction for every network-to-network mapping within a rule domain, and 
significance was assessed using the FWE-corrected p-values of p<0.05.  
 
Permutation testing of FC topology 
 We hypothesized that the precise topology of resting-state FC described the 
baseline architecture of information processing during task states. Thus, to ensure that 
our information transfer mapping procedure depended on resting-state FC topology, we 
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performed permutation testing, shuffling the network-to-network FC topology prior to 
performing information transfer mapping. Due to computational cost, we limited this 
control analysis to network-to-network information transfer mapping. 
 For each subject, we permuted the network-to-network resting-state FC prior to 
applying the information transfer mapping procedure for every pair of networks. More 
specifically, each network’s connectivity was permuted within-network, such that no FC 
values from one network was ever moved to another network. This helped ensure that 
the permutations only altered the network-to-network FC topology, such that (for 
example) the overall mean level of FC between the networks was never altered across 
the permutations. To correct for multiple comparisons, a single permutation cycle 
involved permuting the FC topology for every pair of networks, for all subjects. We then 
performed a group t-test for every pair of network-to-network information transfers, 
extracting the maximal t-statistic across all network-to-network comparisons. We ran 
1000 of these permutation cycles, obtaining the maximal t-statistic for each permutation. 
This formed a null distribution of the maxima across the family of tests (i.e., all possible 
network-to-network information transfers), thus controlling for FWE15. Using our 
permutation distribution, we computed FWE-corrected p-values with a one-tailed test, 
i.e.,    (     ), where     corresponds to the true information transfer estimate, and 

  as the null distribution of maximal t-statistics. Statistical significance was then 
assessed using a FWE-corrected threshold of p<0.05. 
 
Behavioral relevance of information transfers 
 To characterize the behavioral relevance of information transfers, we performed 
a within-subject analysis to decode task performance using miniblock-by-miniblock 
information transfer estimates. We first sought to ensure that baseline miniblock 
information estimates could decode miniblock task performance within subjects prior to 
the information transfer mapping procedure. We defined miniblock information 
estimates as 

                               (  ) 

where      corresponds to the information estimate of rule domain   during miniblock 

 ,         corresponds to the matched task-rule condition similarity of rule domain   

during miniblock  , and            corresponds to the averaged rank correlation of 

miniblock  ’s activation pattern to the mismatched task-rule conditions. 
To perform a given task, knowledge of all three rule domains (i.e., logic, sensory, 

and motor rule domains) is required. Thus, we constructed a decoding model with 
logistic regression, training the model to decode the task performance of a given 
miniblock using the information estimates of a given brain region across all three rule 
domains. The model was tested using cross-validation in MATLAB using the glmfit 
function (with the logit link function), and was formulated as 

 ⃗          (                 )        (  ) 

where  ⃗         corresponds to the vector containing task accuracy for all miniblocks, 

  ,   ,    correspond to the regressors for logic, sensory, and motor information 

estimates, respectively,    corresponds to the training bias (which accounts for the 

imbalance of the correct:error trial ratio), and    ,   ,    correspond to the estimated 
model coefficients for the logic, sensory, and motor information estimates, respectively. 

The link function   corresponds to the sigmoid function, defined as 
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 ( )  
 

     
        (  ) 

Miniblocks with over 50% of trials performed correctly were characterized as a 1, and 0 
otherwise. 
 To test our model, we used cross-validation to predict the binarized accuracy of 
held-out data. However, to account for the imbalanced training data (on average, 

subjects performed 85% of trials correctly), we removed the intercept term    to center 
our predictions (as computed by a sigmoid function) at 0.5. Thus, our predictions on 
held-out data were computed as probabilities by the equation 

 (        )   (              )        (  ) 
where    (   ), and accuracies were predicted/classified by the equation 

        ( ( ))  {
      ( )     

      ( )     
        (  ) 

, where          generates predictions for miniblocks with greater than 50% task 
performance as 1, and 0 otherwise.  
 Given that region-to-region information transfers consistently occurred between 
regions in the FPN and CON across all three rule domains (Fig. 6H), we constrained our 
search to those networks. We applied our decoding model to all regions within the FPN 
and CON across subjects. For each region, we applied one-sided t-tests against chance 
(50%), and corrected for multiple comparisons using FWE-correction permutation 
tests15. We identified a single FPN region in the LPFC (LH region 80 in the Glasser et 
al. atlas; Supplementary Figure 5) whose baseline information estimates predicted 
miniblock task performance. 
 We subsequently tested whether information transfer estimates from the LPFC 
region could predict task performance. We applied the decoding model to information 
transfer estimates across all rule domains (instead of baseline information estimates) for 
all information transfers from the LPFC region to all other FPN and CON regions. (We 
used the LPFC region here as the “source” region, obtaining decoding accuracies from 
that region to all other FPN/CON regions.) We performed one-sided t-tests against 
chance (50%) for each information transfer, and corrected for multiple comparisons 
using FWE-correction permutation tests15. We identified a single information transfer 
from the LPFC to the OFC (LH region 91; both FPN regions) that survived multiple 
corrections with an FWE-corrected p<0.05. Surface visualizations for Supplementary 
Figure 5 were made using Connectome Workbench software (version 1.2.3)18. 
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